
Evil Maid Just Got Angrier
Why Full-Disk Encryption With TPM is Insecure on Many Systems

Yuriy Bulygin (@c7zero)

CanSecWest 2013





Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Legacy BIOS

CPU Reset vector in ROM → legacy boot block

Basic CPU, chipset initialization →
Initialize Cache-as-RAM, load and run from cache →
Initialize DIMMs, create address map.. →
Enumerate PCIe devices.. →
Execute Option ROMs on expansion cards

Load and execute MBR →
2nd Stage Boot Loader / OS Loader → OS

or a Full-Disk Encryption Application

or a Bootkit



Legacy BIOS

CPU Reset vector in ROM → legacy boot block

Basic CPU, chipset initialization →
Initialize Cache-as-RAM, load and run from cache →
Initialize DIMMs, create address map.. →
Enumerate PCIe devices.. →
Execute Option ROMs on expansion cards

Load and execute MBR →
2nd Stage Boot Loader / OS Loader → OS

or a Full-Disk Encryption Application

or a Bootkit



Legacy BIOS

CPU Reset vector in ROM → legacy boot block

Basic CPU, chipset initialization →
Initialize Cache-as-RAM, load and run from cache →
Initialize DIMMs, create address map.. →
Enumerate PCIe devices.. →
Execute Option ROMs on expansion cards

Load and execute MBR →
2nd Stage Boot Loader / OS Loader → OS

or a Full-Disk Encryption Application

or a Bootkit



Legacy BIOS

CPU Reset vector in ROM → legacy boot block

Basic CPU, chipset initialization →
Initialize Cache-as-RAM, load and run from cache →
Initialize DIMMs, create address map.. →
Enumerate PCIe devices.. →
Execute Option ROMs on expansion cards

Load and execute MBR →
2nd Stage Boot Loader / OS Loader → OS

or a Full-Disk Encryption Application

or a Bootkit



Security of Legacy BIOS

Huh?

Old architecture

Unsigned BIOS updates by user-mode applications

Unsigned Option ROMs

Unprotected configuration

SMI Handlers.. have issues [18]

No Secure Boot



Security of Legacy BIOS

Huh?

Old architecture

Unsigned BIOS updates by user-mode applications

Unsigned Option ROMs

Unprotected configuration

SMI Handlers.. have issues [18]

No Secure Boot



Security of Legacy BIOS

Huh?

Old architecture

Unsigned BIOS updates by user-mode applications

Unsigned Option ROMs

Unprotected configuration

SMI Handlers.. have issues [18]

No Secure Boot



Unified Extensible Firmware Interface (UEFI)

CPU reset vector in ROM →
Startup/Security Phase (SEC) →
Pre-EFI Initialization (PEI) Phase (chipset/CPU initialization) →
Driver Execution Environment (DXE) Phase →
OEM UEFI applications (diagnostics, update) →
Boot Device Selection (BDS) Phase → UEFI Boot Manager

OS Boot Manager / Loader or Built-in UEFI Shell



Security of UEFI BIOS

UEFI provides framework for signing UEFI binaries including native
option ROMs

Signed capsule update

Framework for TCG measured (trusted) boot

UEFI 2.3.1 defines secure (verified, authenticated) boot

Protected configuration (authenticated variables, boot-time only..)

SEC+PEI encapsulate security critical functions (recovery, TPM init,
capsule update, configuration locking, SMRAM init/protection..)



So is UEFI BIOS secure?

UEFI specifies all needed pieces but it’s largely up to platform
manufacturers to use them as well as protections offered by hardware

What good are your signed UEFI capsules if firmware ROM is writeable by
everyone?



So is UEFI BIOS secure?

UEFI specifies all needed pieces but it’s largely up to platform
manufacturers to use them as well as protections offered by hardware

What good are your signed UEFI capsules if firmware ROM is writeable by
everyone?



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Measured (Trusted) Boot

Example: TPM Based Full-Disk Encryption Solutions

Pre-OS firmware components are hashed (measured)

Measurements are initiated by startup firmware (Static CRTM)

Measurements are stored in a secure location (TPM PCRs)

Secrets (encryption keys) are encrypted by the TPM and bounded to
PCR measurements (sealed)

Can only be decrypted (unsealed) with same PCR measurements
stored in the TPM

This chain guarantees that firmware hasn’t been tampered with



Windows BitLocker

http://technet.microsoft.com/en-us/library/ee449438(v=ws.10).aspx

http://technet.microsoft.com/en-us/library/ee449438(v=ws.10).aspx


BitLocker with Trusted Platform Module

Volume Key used to encrypt drive contents is encrypted by the TPM
based on measurements of pre-OS firmware

If any pre-OS firmware component was tampered with, TPM
wouldn’t decrypt the key

Ensures malicious BIOS/OROM/MBR doesn’t log the PIN or fake
recovery/PIN screen

Implementation of a Measured Boot



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector

PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]
↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs

↖ SMI Handlers, Static ACPI Tables
PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data

PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]

PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]

PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]

PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]

PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events

PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)

PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]

PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]

PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]

PCR[11] ← BitLocker Access Control



Typical Chain of Measurements

⊗ Initial startup FW at CPU reset vector
PCR[0 ] ← CRTM, UEFI Firmware, PEI/DXE [BIOS]

↖ UEFI Boot and Runtime Services, Embedded EFI OROMs
↖ SMI Handlers, Static ACPI Tables

PCR[1 ] ← SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2 ] ← EFI Drivers from Expansion Cards [Option ROMs]
PCR[3 ] ← [Option ROM Data and Configuration]
PCR[4 ] ← UEFI OS Loader, UEFI Applications [MBR]
PCR[5 ] ← EFI Variables, GUID Partition Table [MBR Partition Table]
PCR[6 ] ← State Transitions and Wake Events
PCR[7 ] ← UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8 ] ← TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9 ] ← TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] ← [Boot Manager]
PCR[11] ← BitLocker Access Control



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



The Problem

Startup UEFI BIOS firmware at reset vector is inherently trusted

To initiate chain of measurements or signature verification

But it’s firmware and can be updated

If subverted, all measurements in the chain can be forged allowing
firmware modifications to go undetected



The Problem

Startup UEFI BIOS firmware at reset vector is inherently trusted

To initiate chain of measurements or signature verification

But it’s firmware and can be updated

If subverted, all measurements in the chain can be forged allowing
firmware modifications to go undetected



The Solution is Simple

Just let BitLocker rely on all platform manufacturers

to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware

, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates

, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software

, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely

, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor

, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration

, and not introduce a single
bug in all of this, of course.



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



Follow The Guidelines



SPI Flash / BIOS Protections

1 Write Protection of BIOS Region in SPI Flash

2 Read/Write Protection via SPI Protected Range Registers

3 SPI Flash Region Access Control Defined in Flash Descriptor



Write Protecting BIOS Region in SPI Flash

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html


SPI Protected Range Registers

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html


Welcome to the Desert of the Real (ASUS P8P67-M PRO)



The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



Let’s Just Try to Write to UEFI BIOS, Shall We?



Hey! We’ve Succeeded!



I Have a Suspicion..



NIST BIOS Protection Guidelines Recap

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf


The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



UEFI Updates Aren’t Exactly Signed Either



NIST BIOS Protection Guidelines Recap

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf


The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?





Angry Evil Maid

Attack Outline Against Encrypted OS Drive

1 While the owner is not watching and system is shut down..

2 adversary plugs in and boots into a USB thumb drive

3 which auto launches exploit directly modifying UEFI BIOS in
unprotected SPI Flash

4 Gets out until owner notices someone is messing with the system

5 Upon next boot, patched UEFI BIOS sends expected ’good’
measurements of all pre-boot components to TPM PCRs

6 TPM unseals the encryption key as the measurements are correct



Angry Evil Maid

Booting From Multiple OS Drives?

1 System has multiple encrypted OS bootable drives (including
bootable USB thumb drives)

2 OS is loaded while other OS drives are encrypted

3 Malware compromised loaded OS exploits weak BIOS protections and
modifies UEFI BIOS

4 When OS is booted from another encrypted drive, compromised UEFI
BIOS submits expected ’good’ measurements to the TPM

5 TPM unseals OS drive encryption key as measurements are correct

6 OS boots on top of compromised firmwware logging PIN



The Original Boot Block



Now beeping SOS.. (not exactly a PIN logger)



Writing Payload to Early BIOS in SPI Flash



BitLocker Decrypted Drive With Patched UEFI BIOS



But That P67 Board Is Just Too Old



ASUS P8Z77-V PRO

Yes! UEFI BIOS updates are signed

NIST will be happy



ASUS P8Z77-V PRO

Yes! UEFI BIOS updates are signed

NIST will be happy



Or Not Yet



Demo

The problem applies to any Full-Disk Encryption solution with TPM,
not just Windows BitLocker

It also is not specific to ASUS. I just happen to use a few of those
systems



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



What About Secure Boot?

UEFI 2.3.1 / Windows 8 Secure Boot

UEFI FW verifies digital signatures of non-embedded UEFI
executables

Signed UEFI drivers on adaptor cards/disk (Option ROMs), UEFI
apps, OS Loaders

Leverages Authenticode signing over PE/COFF binaries

Configuration stored in NVRAM as Authenticated Variables (PK,
KEK, db, dbx, SecureBoot)

UEFI Spec, Chapter 27

Windows 8 Logo requirements for Secure Boot



Windows 8 Logo Requirements

System.Fundamentals.Firmware.UEFISecureBoot



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



BIOS Rootkits

BIOS Rootkit [5,6,7,15]

SMM Rootkit [8,9]

ACPI rootkit [12]

Mebromi - BIOS/Option ROM malware in the wild [14]

If we don’t properly protect the BIOS, malware will

Imagine BIOS malware restoring TDL4 infected MBR on each boot



BIOS Rootkits

BIOS Rootkit [5,6,7,15]

SMM Rootkit [8,9]

ACPI rootkit [12]

Mebromi - BIOS/Option ROM malware in the wild [14]

If we don’t properly protect the BIOS, malware will

Imagine BIOS malware restoring TDL4 infected MBR on each boot



Outline

1 UEFI BIOS

2 Measured/Trusted Boot

3 The Real World: Bypassing Measured/Trusted Boot

4 Windows BitLocker with TPM

5 Secure Boot

6 What Else?

7 Anything We Can Do?



Anything We Can Do?

If you care about Full-Disk Encryption or sneaky little UEFI malware

ASUS is releasing fixed revision of UEFI BIOS. Update!

Check with platform vendor if BIOS updates are signed and if BIOS
meets NIST SP800-147 requirements

Systems certified for Windows 8 are likely to sign UEFI updates

Check UEFI BIOS protections on your system

Do not leave your system unattended

Do not enter PIN if concerned that BIOS was compromised

Stop using systems with legacy BIOS

NIST should have a test suite to validate SP800-147 requirements



Acknowledgements / Greetings

CSW organizers and review board

ASUS for openly working with us on mitigations

apebit, Kirk Brannock, chopin, doughty, Efi, Laplinker, Lelia, Dhinesh
Manoharan, Misha, Bruce Monroe, Monty, Nick, Brian Payne, rfp,
secoeites, sharkey, toby, Vincent

And many others whom I deeply respect

Graphics from http://www.deviantart.com

http://www.deviantart.com


Further Reading

1 Evil Maid goes after TrueCrypt! by Alex Tereshkin and Joanna Rutkowska

2 Attacking the BitLocker Boot Process by Sven Turpe et al.

3 Anti Evil Maid by Joanna Rutkowska

4 Go Deep Into The Security of Firmware Update by Sun Bing

5 Persistent BIOS Infection by Anibal Sacco and Alfredo Ortega

6 Hardware Backdooring is Practical by Jonathan Brossard

7 Mac EFI Rootkits by snare

8 Real SMM Rootkit: Reversing and Hooking BIOS SMI Handlers by core collapse

9 New Breed of Stealthy Rootkits by Shawn Embelton and Sherry Sparks

10 Attacking Intel BIOS by Rafal Wojtczuk and Alexander Tereshkin

11 Firmware Rootkits: The Threat to The Enterprise by John Heasman

12 Implementing and Detecting an ACPI BIOS Rootkit by John Heasman

13 BIOS Boot Hijacking by Sun Bing

14 Mebromi

15 BIOS RootKit: Welcome Home, My Lord by IceLord

16 Hardware Involved Software Attacks by Jeff Forristal

17 Beyond BIOS by Vincent Zimmer

18 http://archives.neohapsis.com/archives/bugtraq/2009-08/0059.html

http://archives.neohapsis.com/archives/bugtraq/2009-08/0059.html


THANK YOU!

QUESTIONS?


	UEFI BIOS
	Measured/Trusted Boot
	The Real World: Bypassing Measured/Trusted Boot
	Windows BitLocker with TPM
	Secure Boot
	What Else?
	Anything We Can Do?

